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ture being composed of virtually planar molecules 
arrayed in planes extending throughout the crystal and 
stabilized by n - n interactions - a graphitic type of 
structure perhaps further stabilized by interaction of 
charge separations associated with the lactone group. 
This possibility offers an attractive speculation con- 
cerning the intermolecular bonding and the role of 
lactone groups in stabilizing carbonaceous structures 
(see Garten & Weiss, 1957). 
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The Direct Structure Determination of a Silicon Carbide Crystal of Type 120 R 
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The direct method of determining polytypic structures, recently published independently by Tokonami 
and by Farkas-Jahnke, has been applied successfully to a SiC crystal of type 120R, whose lattice constants 
are a = 3.080 + 0.003, c = 302-4 + 0.1/~ when described on hexagonal axes. The Zhdanov symbol of the 
structure is [32(22)5 32.22.33]3. It is shown that this direct method applies whenever sufficiently ac- 
curate intensity data are available. The required accuracy has been estimated; it increases with the 
number of double layers in the unit cell. 

Introduction 

Recently, a direct method to solve the crystal struc- 
tures of polytypic substances such as SiC and ZnS has 
been developed independently by Farkas-Jahnke (1966) 
and Tokonami (1966). In this paper we shall, for the 
most part, use the notation of the former. 

In short, the method is as follows. A set of observed 
intensities IF(01/)] 2 with l=  1 ,2 . . .  n is converted into 
a set of IS(01/)] 2 values. For the above substances the 
relevant equations are 

IF(Oll)[Z=c~[f] +fi2i + 2flflI cos (3nl/2n)] lS(Oll)l 2, 

IS(01 l)12 = U 2, 
1=1 

where 

= scaling factor, 
f i ,f l i  = scattering factors of the two atomic species, 
n =number of double layers in the hexagonal unit 

cell, 
N =  n for trigonal and hexagonal structures, 

=n/3 for rhombohedral structures. 

The data are now used to compute the Patterson-like 
function 

+ 
H(m,p) = -~- + 3-iV l=i \ 3  n /  

at the points m =0, + 1 ; p = 0 , 1 , 2 . . .  N]2 [or ( N -  1)/2 
if N is odd]. It is easily shown that H(m,p) represents 
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the frequency of occurrence of the stacking vector 
[-m/3,m/3,p/n] in the structure. Theoretically, i.e. 
when based upon errorless intensity observations and 
correction factors, the F- func t ion  has the following 
properties" 

(1) H(m,p) is a non-negative integer (m,p integer) 
(2) H ( 0 , 1 ) = 0  (no two consecutive double layers are 

located on the same threefold axis) 
(3) H(0,  2) is even ( =  number  of stacking reversals) 
(4) 27 H(m,p)= N 

m 

(5) H ( 1 , p ) - H ( - 1 , p ) = p  (rood. 3) for rhombohedra l  
structures in obverse setting; 

= 0 (rood. 3) for hexagonal  and 
tr igonal  structures. 

The validity of  (1) is evident, since each stacking 
vector occurs an integral number  of times. (2) and (3) 
were given by Tokonami,  (4) by Farkas-Jahnke.  Equa- 
t ion (5) was derived by the author (Appendix). 

Procedures for deriving the stacking sequence f rom 
the computed values of H(m,p) have been given by 
both  of the above authors. However, there is an in- 
herent difference of opinion as to the required accuracy 
of the experimental  data in their approach. 

Farkas-Jahnke tacitly assumes that  the experimental  
errors are small. In  that  case the theoretical and the 
experimental  H(m,p) values are almost  identical and 
her way of interpreting these values leads elegantly and 
fairly straightforwardly to the correct structure. 

Tokonami  argues that  the order of  weak and strong 
reflexions of any one polytypic structure is highly char- 
acteristic of  that  structure (see: Hosoya & Tokonami,  
1967). Semiquanti tat ive intensity data, even uncor- 
rected for the continuous factors (Lorentz, polariza- 

tion and atomic scattering factors), would suffice for 
a structure determination,  since they constitute a rec- 
ognizable t ransform of the structure. Of  course, the 
experimental  H(m,p) values computed f rom such data  
do not  meet  the above conditions (1) to (5), but  ac- 
cording to Tokonami  there would exist a reliable 
method  of computing the true H(m,p) values, whereby 
the experimental  data are refined while the character- 
istic intensity distr ibution is preserved. 

The direct determinat ion of a 120R type structure 
of SiC provides a welcome opportunity for compar ing 
the merits of  these two approaches. 

Exper imenta l  

In a batch of SiC crystals, prepared in this laboratory 
by Dr  W.F .Kn ippenbe rg ,  a colourless, t ransparent  
specimen was found with l inear dimensions in all di- 
rections of about  0.2 ram. 

Using the ' P A I L R E D '  diffractometer this crystal 
was found to consist ma in ly  of an  unknown 120R type 
structure (a = 3.080 + 0.003; c = 302.4 + 0.1 A) in syn- 
tactic coalescence with a minor  quanti ty of 27R. In  
addit ion some very weak difffraction max ima  were ob- 
served point ing to the presence of small  amounts  of  
other SiC structures which could not, however, be 
identified. There were no indications of one-dimen- 
sional disorder. The reflexions of  120R were easily 
indexed by compar ing their positions in the d iagram 
with those of 27R. At  the same t ime it was verified 
that  the presence of  the latter structure would not  inter- 
fere with the structure determinat ion of the former. 
No certainty could be obtained about  the influence of  
the unidentified structures; some of their  reflexions 
might  coincide with those of 120R, but, to judge from 

Table 1. The experimental values of H(m,p) and those computed for the structures (a), (b) and (c) 

lle~ (m,p) Ha (m,p) /7~ (m,p) llc (m,p) 
^ ^ ^ ^ 

m - 1  0 1 - 1  0 i - 1  0 1" --1 0 1" 
p 
o o.o 40.0 o.o o 40 o o 40 o o 40 o 
1 19.9 1.3 18.8 21 o 19 21 o 19 21 o 19 
2 lO.8 16.4 12.8 lO 18 12 lO 18 12 lO 18 12 
3 17.4 5.3 17.3 18 4 18 18 4 18 18 4 18 
4 2.6 31.3 6.2 2 32 6 2 32 6 2 32 6 
5 24.0 1.1 14.9 25 o 15 25 o 15 25 o 15 
6 7.1 20.5 12.4 7 20 13 7 20 13 6 22 12 
7 17.8 5.6 16.5 18 6 16 18 6 16 19 4 17 
8 3.1 26.6 lO.3 4 27 9 4 27 9 2 28 lO 
9 26.4 1.8 11.8 25 2 13 25 2 13 27 1 12 

lO 4.9 21.5 13.7 4 22 14 4 22 14 4 22 14 
11 19.5 6.4 14.1 19 6 15 21 5 14 21 5 14 
12 4.2 23.7 12.1 5 24 11 3 25 12 3 25 12 
13 24.2 4.7 11.1 23 5 12 25 4 11 25 4 11 
14 4.0 19.5 16.5 3 20 17 3 20 17 3 20 17 
15 23.5 6.0 lO.4 23 6 11 25 5 lO 25 5 lO 
16 3.4 21.9 14.7 4 22 14 2 23 15 2 23 15 
17 24.1 6.6 9.3 23 7 lO 25 6 9 25 6 9 
18 3.8 18.4 17.7 3 19 18 3 19 18 3 19 18 
19 24.2 7.4 8.4 23 8 9 25 7 8 25 7 8 
20 3.3 18.4 18.4 4 18 18 2 19 19 2 19 19 
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the weakness of their observable reflexions, this could 
give rise only to minor errors. 

In order to avoid appreciable absorption errors 
M o K0~ radiation was used for the intensity measure- 
ments (/z= 15 cm-1; /M~0.3).  As a consequence the 
resolution of the diffraction maxima was too poor for 
integrated intensity measurements to be possible. 
Therefore, the peak heights were taken as a measure 
of the integrated intensities, a procedure that seems 
justified in view of the narrow range of 0-angles 
(8 °-11 °) of the reflexions involved. 

The experimental data were corrected for non- 
linearity in the counting circuitry and for the Lorentz 
factor of a stationary crystal, but the absorption cor- 
rection and the polarization factor were neglected. 
Using the atomic scattering factors of International 
Tables for X-ray Crystallography (1962), the intensities 
were converted into IS(011)l 2 values which were sub- 
sequently employed to compute H(m,p) (Table 1). 

Structure determination 

Clearly, the experimental H(m,p) values do not meet 
the five conditions set out in the Introduction. A first 
impression of the effect of experimental errors is ob- 
tained from the fact that H(0, 1)= 1.3 instead of zero. 
However, the exact value of H(0,1) is the only one 
known in advance. In order to estimate the possible 
errors of the other H(m,p) we now arbitrarily assume 
that the intensity data have an average error of about 

10%. With -~ IOlS(Oll)lZl/s IS(01l)12=0.1 it follows 
I=I l=I 

from the definition of H(m,p) that 

,--, I 

2 ~ 1 6 1 3 ( 0 1 0 1 2 1 = 2 . 6 7  . 
< 3N l=~ 

Table 2. The value of IS(01l)l 2. 

(o) observed; (e) the same corrected for extinction; (a), (b), (c) computed for the corresponding structures. 

l ISo(011)l 2 ISe(01l)[ 2 IS, ,(01l)12 ISo(01I)I 2 lSc(Oll)lZ 

2 38-5 33-5 21-4 33.9 34.8 
5 1.7 1.5 3.0 0.2 1.5 
8 4.6 4.0 7.7 4.8 3.4 

11 2.7 2.4 4.3 5.4 2.3 
14 2-2 1.9 1.5 2.7 2-0 
17 3.5 3.1 2.4 2.0 3.2 
20 3.4 3.0 3.0 3.0 3.0 
23 5.6 4.8 5.1 4.5 4.7 
26 10.6 9.2 9.4 5-7 10.2 
29 123.8 125.2 109.2 122.1 126.6 
32 141.7 144.2 155.5 140.2 135-0 
35 40.2 35.0 45.8 50.3 37.0 
38 11.8 10.3 8.8 15.2 11.0 
41 15-9 13-8 5.2 1.7 16.7 
44 18-3 16.0 6.9 0.8 18.8 
47 6.4 5.6 3.8 7.7 4.8 
50 4.1 3.6 17.2 25-4 3-0 
53 11.0 9.6 27-5 21.0 6-8 
56 14.5 12.6 23-4 4.6 15.9 
59 652.2 736-6 657-9 701.2 722.5 
62 32.5 28.3 67.4 30.1 35.2 
65 10.7 9-3 12.3 21.1 7.7 
68 3-7 3.2 5.5 15-4 3.5 
71 13.0 11.3 10.7 6.3 7.7 
74 20.6 17-9 22.3 15-8 22-5 
77 9.5 8.3 5.0 8.5 10.5 
80 17.0 14.8 13.0 19.0 19-0 
83 71.5 62.2 68.9 65.1 68-1 
86 72.4 63.0 61-5 52.4 53.9 
89 70.1 61.0 58.1 74.0 67.7 
92 40.5 35.2 57.3 47.5 39.2 
95 23-2 20.2 11.0 12.5 13.8 
98 39.6 34-5 23.6 24.3 34.6 

101 11.1 9.6 5.7 5.8 12.0 
104 2.5 2.1 5.5 6.4 1.7 
107 8.4 7-3 15-7 14.8 7.0 
110 7.4 6.5 6.8 4.6 3.0 
1 1 3  5-5 4.8 0 . 1  2.0 5.4 
116 12.7 11.0 2.3 8.4 10.4 
119 15.5 13.5 28.4 14.1 14.1 

A C 24B - 5 
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This last value is the maximum error, which is very 
unlikely ever to occur. It seems reasonable therefore, 
to take a possible error of 2 units in each H(m,p) into 
account. 

In practice, as shown already by Tokonami, such un- 
certainties do not necessarily lead to great difficulties 
in the structure determination. With p = 1, for example, 
the experimental values are: H ( - 1 , 1 ) = 1 9 . 9 + 2 ;  
/ / ( 0 ,1 )=1 .3+2 ;  H(1,1)=18.8+2,  but there is only 
one set of values which meets the required conditions, 
viz. 21,0, 19. With p = 2  there are two such sets: 
11, 16, 13 and 10, 18, 12. On further investigation the 
first of these turns out to be incompatible with the 
experimental H(m, 3). Thus, even when experimental 
errors are taken into account, the number of possible 
values of each H(m,p) is very limited. 

Finally, considering all possibilities and following 
the more systematic Farkas-Jahnke method, three very 
similar structures are found to be in equally good agree- 
ment with the experimental H(m,p) (Table 1). Their 
Zhdanov symbols are: 

(a) [32(22)5 32.32.23]3, (b) [32(22)5 32-33.22]3 and 

(c) [32(22)5 32.22.33]3. 

When the IS(01I)I for the structures are computed, it 
is found that (c) is the correct structure; it corresponds 
to an R index of 6.6% as against 18.1% and 18.0% 
for (a) and (b) respectively. 

Even for this structure there are a few discrepancies 
between the observed and calculated values of IS(01012 
as will be seen in Table 2. Some of the reflexions in- 
volved have been remeasured several times under vari- 
ous experimental conditions, but errors in the original 
measurements were not detected. Since, on the basis 
of some additional experiments, absorption as well as 
the Renninger effect were ruled out as the responsible 
factors, we are inclined to ascribe these discrepancies 
to the structural impurity of the crystal. In view of the 
general agreement with experiment and of the great 
increase of the R index in going from one structure 
to another closely resembling it, it is considered ex- 
tremely improbable that the proposed structure would 
be in error. In this connexion it may be added that 
similar discrepancies have been found in several other 
investigations on SiC structures: 105R (Singh & Verma, 
1964), 90R (Krishna & Verma, 1963), 24R (Gomes de 
Mesquita, 1965). Even so, in all these cases there can 
be little doubt about the correctness of the structure 
assignment. 

Discussion 

The fact that the correct structure has been found, out 
of more than 109 possible stacking sequences, demon- 
strates the power of the direct method of structure 
determination. The question now is whether or not 
this method can be applied to elucidate any arbitrary 
polytypic structure. To answer this question one must 

consider that the method works best when all II(m,p) 
values are unambiguously determined. This would be 
the case if each 18/-/I -< 1, which means that the average 
error of the observed intensities should be at most of 
the order of 3/2Nx 100%. In other words, the permis- 
sible experimental errors are inversely proportional to 
the number of double layers in the unit cell. The larger 
that number, the smaller the chance of a successful 
analysis. 

Of course it might be possible to solve a structure 
even when there are ambiguities among the H(m,p) 
values and the present work is an example of this, but 
then a good deal of luck is needed. This was realized 
when we tried to redetermine the structure starting 
from the theoretical H(m,p) for structure (c) and put- 
ting ~H= + 2. The number of structures to be con- 
sidered was so large that we abandoned the idea of 
continuing the analysis to the end.* 

Tokonami's method dens exactly with this difficulty. 
Somewhat simplified, it consists in determining the al- 
lowed values of II(m, 1) (in the present case: 21, 0, 19) 
and refining the observed intensities so as to equalize 
the experimental and calculated H(m, 1). Thereby the 
characteristic intensity distribution is maintained as far 
as possible. A new table of H values is computed on 
the basis of the refined data, from which H(m,2) is 
now determined. Then the intensity data are refined 
again and so on. Each time a better starting point is 
obtained for the continuation of the analysis. In this 
way it would be possible to determine the true H values 
and to solve the structure even when only inaccurate, 
semi-quantitative data are available. It stands to reason 
that this procedure requires the intensity distribution 
of the structure under investigation to be so character- 
istic that there is no risk of refining the observations 
until they correspond to another structure. It has been 
argued by Hosoya & Tokonami that this requirement 
is generally fulfilled and the method has been applied 
by Tokonami to elucidate the structure of SiC type 
96R. However, a comparison of the observed and cal- 
culated intensities (Table 3) shows that their mutual 
agreement is no better than that of the three sets of 
calculated intensities of the 120R type structures (a), 
(b) and (c). A great similarity between the calculated 
intensity distributions has also been found by Krishna 
& Verma for two possible structures of SiC type 90R. 
It seems, therefore, that the availability of accurate in- 
tensity data is more essential than hitherto sometimes 

* With 617= + 1 only structure (c) is in agreement with the 
theoretical /-/-function values. With 6H=_+2 we find the 
structures (a), (b) and (c), and in addition we have to consider 
numerous structures which share the condition that the figure 
'1' appears in the Zhdanov symbol. Generally, such SiC struc- 
tures are rejected in advance, as they are assumed to be non- 
existent, so that - following common practice - we end up 
again with structure (e) as the only solution. It would be un- 
satisfactory, however, to have a method that is inapplicable to 
the complete set of theoretically possible stacking se- 
quences. 
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Table 3. Observed and calculated intensities 
of  SiC type 96R 

The observed  intensities are those measured  directly f rom a 
p h o t o g r a p h  and b rough t  to scale; Io (10.70) is unreliable. The  
calculated intensities are actual ly [S(10/)[ 2 values. (After  
Tokonami) .  

l Io(10l) It(101) 

1 0 0 
4 0 0 
7 16 2 

10 32 5 
13 16 I1 
16 64 27 
19 32 21 
22 128 23 
25 32 19 
28 16 8 
31 96 60 
34 64 126 
37 64 36 
40 8 11 
43 8 0 
46 64 31 
49 64 256 
52 0 12 
55 0 1 
58 0 0 
61 0 1 
64 64 289 
67 8 1 
70 (64) 0 
73 8 0 
76 32 4 
79 96 72 
82 16 6 
85 8 0 
88 16 1 
91 8 1 
94 0 1 

assumed, and that the refinement of observations is 
rather hazardous. 

Even so, a limited use of the above method can 
certainly be made. In the present study, for example, 
we could have taken the experimental value H(0,1)--  
1'3 as an indication and measure of secondary extinc- 
tion (the only important physical effect for which no 
corrections were made), and we could have used this 
value to compute the extinction correction, thereby 
reducing H(0,1) to zero. When this is done a new set 
of ]S(01l)l 2 is obtained (Table 2), to which a new table 
of II(m,p) values corresponds, none of which deviates 
by more than one unit from the theoretical value for 
structure (c). Conversely, with f i l l=  + 1 one finds struc- 
ture (c) as the only possible solution of the corrected 
H-function. Thus the correctness of the structure as 
well as the extinction correction are confirmed simul- 
taneously. As a result of this correction the R index 
decreases to 5.9%. 

It should be emphasized that this application of 
Tokonami's method differs from the original one in 
that a correction is made here for a known physical 
effect and that the magnitude of this correction is deter- 
mined by the experimental H(0,1), the only H(m,p) 
whose exact value follows from the theory. 

Conclusion 

The direct method of determining polytypic structures, 
especially in the way proposed by Farkas-Jahnke, has 
been found of great value. It can be applied successfully 
when sufficiently accurate intensity data are available. 
The required accuracy increases with the number of 
double layers in the unit cell, so that the method may 
be less suitable for structures of the greatest complexity. 

Actually, the method consists in a systematic un- 
ravelling of the complete set of stacking vectors repre- 
sented by the function H(m,p). The value of this func- 
tion can be computed at the relevant points (rn,p) on 
the basis of the experimental intensity data; generally 
these experimental H(m,p) values do not meet the 
theoretical conditions. The mismatch between theory 
and experiment can be used to correct the experimen- 
tal data to some extent, e.g. for extinction. The cor- 
rected data then provide a better starting point for the 
structure determination. The assertion that semi-quan- 
titative observed intensities contain sufficient informa- 
tion to be used for the direct method has not been 
verified. The intensity distributions of structures closely 
resembling one another may be so similar, that it might 
be impossible to distinguish between them on the basis 
of less accurate data. 

The author is indebted to Mr  J. Hornstra for valu- 
able discussions and to Miss C.Kortleve for some 
computing work. 

A P P E N D I X  

The derivation of  formula (5) 

Any arbitrary stacking vector [ -  m/3,m/3,p/n], 
henceforth denoted as [m,p], can be considered as 
resulting from the addition of two or more other stack- 
ing vectors provided that p _  2. For the present pur- 
pose we write each [m,p] as a combination o f [ +  1,1] 
+ [rn~ 1 ,p -1] .  The stacking vector [0,1] does not oc- 
cur in silicon carbide structures (formula 2). 

The allowed values of m for p > 1 are 0, + 1, so the 
following combinations are therefore possible: 

[1,p]= [ 0 , p - I ] + [ 1 , 1 ]  (a) 
[ 1 , p ] = [ -  1 , p -  1 ] + [ -  1, 1] (b) 
[ 0 , p ] = [ -  1 , p -  1]+[1,1] (c) 
[O,p]= [ 1 , p - I ] + [ - 1 , 1 ]  (d) 

[ - 1 , p ] =  [ 1 , p - I ] + [ 1 , 1 ]  (e) 

[ - 1 , p ] =  [O,p-1] + [ - 1 , 1 ]  (f) .  

If n~ stands for the frequency of occurrence of com- 
bination (a) etc., then 

H(1,p) = nc, + no 
I I ( - 1 , p ) = n e + n l  
H ( 1 , p -  1 )=na+ne  
1 7 ( -  1,p - 1) = n~ + no. 

A C 24B - 5* 
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Hence 

{ H ( 1 , p ) - H ( -  1 , p ) } - { H ( 1 , p -  1 ) -  H ( -  1 , p -  1)} 

= na + nb - -  ne - -  n f - -  nt~-- ne + nb + ne 

= (na + ne + ne) -  (nb + na + ny) (mod. 3) 
= { H ( 1 , 1 ) - H ( -  1,1)} (mod. 3). 

This is just another way of expressing formula (5), 
since hexagonal and trigonal SiC structures (space 
groups P63mc and P3ml)  are characterized by 
{ H ( 1 , 1 ) - H ( -  1,1)} = 0 (mod. 3), and rhombohedral 
structures (R3m) by {H(1 ,1 ) -  H ( -  1,1)} = __ 1 (rood. 

3). The positive sign refers to the obverse setting, the 
negative sign to the reverse one. 
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The Crystal Structure of Lanthanum Rhenium Oxide, La4Re6019 
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Lanthanum rhenium oxide, La4Re6019, is a body centered cubic phase, a=  9.0325 +0.0014/~, space 
group I23, Z=2.  It is formed by reacting LazO3, ReO3, and Re at 1000 ° in vacuum. The structure con- 
tains a three-dimensional network of ReO6 octahedra in which pairs of octahedra share an edge; the 
pairs in turn are linked to each other through corner sharing. The Re-Re distance in each pair is 2.42 A, 
indicating metal-metal bonding. The Re-O distances range from 1.98-2.01/~. The lanthanums are pres- 
ent as tetrahedral LaaO groups in open spaces of the network. The lanthanum coordination number is 
10 with La-O distances of 2-50 A (1); 2.51/~ (3); 2.60/~ (3); and 2.88/~ (3). 

Introduction 

If lanthanum sesquioxide, rhenium trioxide, and rhe- 
nium metal, in proportions corresponding approxi- 
mately to LaERezOT, are heated to 1000 ° in vacuum, 
a heterogeneous product is formed (Longo, 1964). The 
major component of this product is a body centered 
cubic phase. No technique was found to separate this 
phase from the others present, so the stoichiometry 
could not be determined reliably in the normal way 
from density and chemical analysis. Microscopic ex- 
amination of the material showed crystals apparently 
suitable for single-crystal study, so it was decided to 
solve the structure and from it establish the composi- 
tion of the cubic phase. 

Experimental 

Longo (1964) obtained a good powder pattern for the 
cubic lanthanum rhenium oxide, which was indexed 
using a body centered cell with a=9.05  A. A more 
accurate cell length was obtained by Cohen's least- 
squares method (Klug & Alexander, 1954), using a 
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program of Leipold & Pauly (1963). The value for a 
obtained is 9.0325 + 14 A. 

Under the microscope a number of black (or dark 
blue) crystals were observed. Their habit was multi- 
faceted with one large face-apparently the face which 
had been in contact with the walls of the capsule-so 
that the crystals roughly approximated hemispheres. 
The radii of these 'hemispheres' were in the range 
0.05-0.20 mm. The crystal which was selected had base 
diameters ranging from 0.130 to 0.165 mm and a height 
of 0.135 mm. 

A precession camera study revealed directions with 
(76 zero level symmetry and C3 upper level symmetry 
as well as directions showing C2~ symmetry for both 
zero and upper levels. This establishes Laue group m3 
(Buerger, 1942). All of the photographs showed ab- 
sences for odd values of h + k +  l. The probable space 
group is therefore one of I23, 1213 and Im3. 

The crystal was aligned with the c axis vertical when 
Z = 0  on a General Electric single crystal orienter. Zr- 
filtered Mo radiation was used with pulse height dis- 
crimination, a scintillation counter, and a 2 ° take-off 
angle to align the crystal and collect data. A total of 
2634 reflections were measured by the moving-crystal 
moving-counter technique. Background was measured 
on each side (in 0) of each reflection. Averaging equiv- 


